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SUMMARY

Visual motion information is computed by parallel On
and Off pathways in the retina, which lead to On and
Off types of starburst amacrine cells (SACs). The
approximate mirror symmetry between this pair of
cell types suggests that On and Off pathways might
compute motion using analogous mechanisms. To
test this idea, we reconstructed On SACs and On
bipolar cells (BCs) from serial electron microscopic
images of a mouse retina. We defined a new On BC
type in the course of classifying On BCs. Through
quantitative contact analysis, we found evidence
that sustained and transient On BC types are wired
to On SAC dendrites at different distances from the
SAC soma, mirroring our previous wiring diagram
for the Off BC-SAC circuit. Our finding is consistent
with the hypothesis that On and Off pathways
contain parallel correlation-type motion detectors.
INTRODUCTION

The starburst amacrine cell (SAC) is a key player in retinal

computation of the direction of a moving stimulus. Ablation of

SACs impairs the optokinetic reflex, a behavior that depends

on computation of visual motion (Yoshida et al., 2001; Amthor

et al., 2002). Both ablation (Yoshida et al., 2001; Amthor et al.,

2002) and reversible inactivation (Vlasits et al., 2014) of SACs

reduce direction selective (DS) responses in ganglion cells,

which receive synaptic input from SACs. SAC dendrites are pref-

erentially activated by visual stimuli that move outward from the

soma to the dendritic tips (Euler et al., 2002; Lee and Zhou, 2006;

Hausselt et al., 2007).

The proposed mechanisms for DS of SAC dendrites fall into

several categories. According to inhibitory cellular hypotheses,

dendritic biophysics causes inhibitory input to SACs to have

effects that dependondendritic location (Borg-GrahamandGrzy-
wacz, 1992;Gavrikov et al., 2003). In inhibitory circuit hypotheses,

GABAergic synaptic connectivity between SAC dendrites de-

pends on the difference between their preferred directions (Lee

and Zhou, 2006; M€unch and Werblin, 2006). In excitatory cellular

hypotheses, SAC biophysics causes excitatory input to SACs to

have effects that depend on dendritic location (Tukker et al.,

2004; Hausselt et al., 2007; Oesch and Taylor, 2010).

Recently, we proposed an excitatory circuit hypothesis based

on specificity of wiring between bipolar cells (BCs) and SACs.

The proposal was based on anatomical evidence that sustained

and transient BC types are connected to SACs at locations that

are near and far from the SAC soma, respectively (Kim et al.,

2014). Such ‘‘space-time wiring specificity’’ could make the

BC-SAC circuit function as a correlation-type motion detector

(Borst and Euler, 2011) and is consistent with the observed out-

ward preferred direction of SAC dendrites.

Like many other retinal neurons, the SAC comes in both On

and Off types. The On SAC resembles a reflection of the Off

SAC across a plane through the middle of the inner plexiform

layer (IPL) (Figures 1B and 1D). Probably due to this striking sym-

metry, DS and its mechanisms are often assumed to be similar

between On and Off SACs. However, published studies of

SACs were typically restricted to a single type. Physiological

studies of DS were carried out for On SACs (Euler et al., 2002;

Lee and Zhou, 2006; Hausselt et al., 2007), while our anatomical

study of BC-SAC wiring specificity was carried out for Off SACs

(Kim et al., 2014).

Here, we find evidence that the On BC-SAC circuit possesses

a space-time wiring specificity analogous to that shown previ-

ously for the Off BC-SAC circuit. We reconstructed a large set

of On BCs and On SACs from e2198, a dataset of mouse retinal

images from serial block-face scanning electron microscopy

(Briggman et al., 2011). Based on the resulting high-resolution in-

formation about the anatomy of single cells, we have succeeded

in subdividing BC5 into three types that we call BC5t, BC5i, and

BC5o. This finding confirmsHelmstaedter et al. (2013), whowere

previously able to distinguish just two BC5 types, but predicted

the existence of more. Our definition of a third BC5 type in-

creases the total count of cone BC types to 13.
Cell Reports 14, 1–9, March 1, 2016 ª2016 The Authors 1

http://eyewire.org
mailto:sseung@princeton.edu
http://dx.doi.org/10.1016/j.celrep.2016.02.001
http://creativecommons.org/licenses/by/4.0/


A B C

D

E

Figure 1. On-Off and Sustained-Transient

Organization of the IPL

(A) The IPL is divided into On andOff (gray shading)

sublayers, which support On BC-GCwiring andOff

BC-GC wiring specificity.

(B) Observations of BC visual responses (Baden

et al., 2013; Borghuis et al., 2013) suggest a

tentative further division of the IPL into On-

sustained, On-transient, Off-transient, and On-

sustained sublayers. The two sustained-transient

divisions are located at the depths of On and

Off SACs.

(C) Analogous wiring specificity for On and Off BC-

SAC circuits. Sustained BCs prefer the proximal

zone of SACs and transient BCs prefer the inter-

mediate or distal zones of SACs.

(D) When viewed perpendicular to the light axis, On

(blue) and Off (red) SACs appear mirror symmetric

across the plane separating the On and Off sub-

layers of the IPL.

(E) The same SACs appear similar when viewed

along the light axis. A BC axon (green) is much

smaller. The black circles and gray dots respec-

tively indicate reconstructed On and Off SAC cell

body locations. The On BCs were reconstructed in

a patch (dashed rectangle). The scale bar repre-

sents 50 mm.
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Contact analysis is consistent with a wiring diagram in

which BC7 prefers to synapse closer to the On SAC soma

and BC5 prefers to synapse farther from the soma (Fig-

ure 1C). Among the BC5 types, synaptic input from BC5o is

likely to be less than from BC5t and BC5i.

Most of the available evidence suggests that transient

BC types generally arborize near the IPL center and sustained

BC types near the IPL edges (Baden et al., 2013; Borghuis

et al., 2013) (but see Ichinose et al., 2014 for a divergent

view). Combined with the standard division of the IPL

into On and Off sublamina, this yields four sublayers:

On-sustained, On-transient, Off-transient, and Off-sustained

(Figure 1B). Based on this IPL organization, it is likely

that BC7 is sustained and BC5 is transient. If this is the

case, then On BC-SAC wiring is analogous to Off BC-SAC

wiring.
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RESULTS

Aligning Cells to a Common
Coordinate System
The cell bodies of On and Off SACs are in

the ganglion cell layer (GCL) and inner nu-

clear layer (INL) respectively, on opposite

sides of the IPL (Figures 1B and 1D). The

reconstructions include 156 SACs (77

On and 79 Off; Figure 1E), which we esti-

mate is more than half of the SACs in

e2198 (Experimental Procedures). The

diameter of the SAC arbor is much larger

than the spacing between cell bodies

(Figure 1E), so the arbors of adjacent
SACs are highly overlapping. The reconstructions also include

271 On BC axons, coming close to complete coverage of all

BCs in a subregion of e2198 roughly (0.1mm)2 in area (Figure 1E).

BC axons are much smaller than SAC arbors (Figure 1E). The re-

constructions of On SACs and BCs are presented here, while the

Off SACs were reconstructed for a previous publication (Kim

et al., 2014).

For classification of retinal cell types, we relied heavily on the

stratification profile, defined as the distribution of a cell’s surface

area over the depth of the IPL. It is standard to use On and Off

SACs as landmarks to define IPL depth. Since the IPL has curva-

ture and variations in thickness (Figure 2A), we computationally

flattened the retina by transforming the On and Off SACs into

parallel planes (Figure 2B). This type of coordinate transforma-

tion improves the accuracy of stratification profiles and has pre-

viously been applied in light microscopic anatomy (Manookin
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Figure 2. Properties of On and Off SACs,

Blue and Red Respectively, and Usage as

Landmarks for Quantifying IPL Depth

(A) SACs projected along a tangential axis, after

rigid alignment to the tangential plane. The curva-

ture and thickness variations of the IPL are evident.

(B) SACs projected along a tangential axis, after

piecewise bilinear alignment to the tangential

plane.

(C) SAC stratification profiles before (dashed) and

after (solid) piecewise bilinear alignment.

(D) SAC stratification depth versus distance from

the soma. The lines indicate median and shading

the 25th and 75th percentiles. The distance bins are

20 mm wide, beginning with 0 to 20 mm.

(E) Fraction of SAC surface in contact with BCs

versus distance from the SAC soma. SE is based

on the number of BC-SAC pairs at each distance

(median length and SD of SAC dendrites, inset).
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et al., 2008; Siegert et al., 2009; S€umb€ul et al., 2014). Average On

and Off SAC stratification profiles became narrower after the

transformation (Figure 2C).

Famiglietti (1983) divided SAC dendrites into proximal, inter-

mediate, and distal zones. The median stratification depth of

SAC dendrites varies strongly in the proximal zone, weakly in

the intermediate zone, and is roughly constant in the distal

zone (Figure 2D).

In studies of rabbit retina, Famiglietti (1991) reported that pre-

synaptic boutons are confined almost exclusively to the distal

zone, while synaptic inputs from bipolar and amacrine cells are

found in all zones. We found that the fraction of On SAC surface

in contact with BCs is smaller in the distal zone (Figure 2E), sug-

gesting that BC synapses have some preference for the proximal

and intermediate zones of SAC dendrites. We previously re-

ported a similar dependence for Off SACs (Kim et al., 2014);

the effect is stronger for On SACs (Figure 2E).

Subdivision of BC5 into Three Cell Types
Mouse BCs were originally classified into nine cone types (BC1

through BC9) and one rod type based on light microscopic anat-

omy (Ghosh et al., 2004). Later on, BC3 was subdivided into

BC3a and BC3b based on molecular differences (Wässle et al.,

2009). Then electron microscopic anatomy was used to distin-

guish BC3a and BC3b, divide BC5 into two types, and discover

an XBC type (Helmstaedter et al., 2013).

We revisited the classification of On BCs using the e2198 re-

constructions (Experimental Procedures; Figure S1). As shown

in the gallery of example cells (Figures 3A and 3B), On BC axons

are found in half the depth of the IPL, closer to the GCL than the

INL. Our On BC types correspond to those defined previously,

with good agreement regarding densities (compare Figure 3D

with Figure 1E inset of Helmstaedter et al., 2013). We were
Cell Reports 14
able to subdivide BC5 into three types

called BC5t, BC5i, and BC5o. The three

types stratify at similar depths (Figures

3A and 3C), which is why they were origi-

nally grouped into a single Type 5 (Ghosh
et al., 2004). Nevertheless, it is possible to differentiate between

the types based on subtle differences between their stratification

profiles. BC5-inner (‘‘BC5i’’) stratifies slightly more toward the in-

ner retina than the other types (Figures 3A, 3C, and S1B). BC5-

thick (‘‘BC5t’’) is more thickly stratified than BC5-outer

(‘‘BC5o’’), as shown in Figures 3A, 3C, and S1D. The stratifica-

tion profile of BC5t is weakly bimodal (Figure 3C), but this prop-

erty was not used for the classification.

We are confident of our three-way division of BC5 based on

stratification (Experimental Procedures; Figure S1), because

the axonal arbors of each cluster end up roughly tiling the retina

with little overlap (Figures 3E–3G). This ‘‘tiling principle’’ is

thought to be a defining characteristic of a true BC type (Wässle

et al., 2009). On the other hand, when BC5 cells are divided into

just two clusters, it is impossible to avoid many collisions be-

tween highly overlapping axonal arbors (Figure 4E).

Only a few violations of the tiling principle are evident in Fig-

ures 3E–3G. One possibility is that the tiling principle holds

only approximately and that the violations are a form of biological

‘‘noise’’. Another possibility is that the violations result from

errors in our classification procedure. Therefore, we generated

a ‘‘corrected’’ classification by swapping a few cells between

types (Experimental Procedures). The number of swaps is rela-

tively small (Table S1). The ‘‘type gallery’’ of Figure S3 exhibits

our final classification after swapping. The corrected classifica-

tion was the basis of subsequent analysis of BC-SAC wiring,

but our results are qualitatively unchanged even if the uncorrec-

ted classification is used.

Defining BC Types Based on Contact
Only if the stratification profiles of two cells overlap is there po-

tential for contact between the cells and hence potential for syn-

aptic connections. In other words, stratification constrains retinal
, 1–9, March 1, 2016 ª2016 The Authors 3
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Figure 3. Classification of On BC Types

(A and B) Examples of each type, perpendicular (A)

and parallel (B) to light axis.

(C) Average stratification profiles of types, along

with median (dashed line) and quartiles (shaded) of

stratification depth of On SAC dendrites versus

distance from SAC cell body.

(D–G) Table of statistics: number n of recon-

structed cells; average convex hull area of the

projection onto the plane perpendicular to the light

axis; estimate of number of cells per mm2; and

coverage factor, sum of convex hull areas divided

by area of hull union. The BC5t (E), BC5o (F), and

BC5i (G) axonal arbors show few violations of the

tiling principle, suggesting that the classification is

fairly accurate. The scale bars represent 10 mm for

(A) and (B) and 30 mm for (E)–(G).
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connectivity (Masland, 2004). It follows that cell types defined

using stratification are likely to end up having functional signifi-

cance, assuming that the connectivity of a cell is closely related

to its function (Seung and S€umb€ul, 2014).

It would be more direct to define a cell type as a set of cells

with similar contact or connectivity patterns (Seung, 2009,

2012), rather than use stratification as a proxy for these proper-

ties. For example, the 302 neurons of C. elegans were divided

into 118 classes, each containing neurons with similar connec-

tivity patterns (White et al., 1986). Likewise, Helmstaedter et al.

(2013) divided BC5 into classes based on patterns of contact

with two ganglion cell types named ‘‘gc31-56’’ and ‘‘gc36-51’’.

We decided to replicate their analysis, mainly in order to deter-

mine the correspondence between contact-based and stratifi-

cation-based classifications. A secondary motivation was to

examine how contact-based classification depends on the

completeness of reconstruction. Helmstaedter et al. (2013) re-
4 Cell Reports 14, 1–9, March 1, 2016 ª2016 The Authors
constructed all neurons with cell bodies

contained in a (0.1 mm)2 patch. This

method would not count ganglion cells

with arbors inside the patch, but cell

bodies outside the patch, evident as

gaps in coverage in the gallery of cell

types in the Supplemental Data of

Helmstaedter et al. (2013). Contact with

missing arbors obviously cannot be

quantified, hampering contact-based

classification.

We were able to replicate and improve

the contact-based classification by mak-

ing use of a large set of ganglion cells

that were reconstructed from the e2198

dataset in a parallel study to be reported

elsewhere. From this set of ganglion cells,

we identified 16 examples of gc31-56 and

19 examples of gc36-51 based on their

distinctive stratification profiles (Figures

4A and 4B). The arbors of each ganglion

cell type completely cover the central re-

gion of e2198 where the BCs are located,
because the reconstructed ganglion cells include those with cell

bodies outside the central region (Figure S3). For each BC5 cell,

we quantified the fraction of its axonal surface area in contact

with gc31-56 cells and the fraction of its axonal area in contact

with gc36-51 cells. Then BC5 indeed splits nicely into two clus-

ters based on the two contact fractions (Figure 4C). One cluster

called BC5A (Helmstaedter et al., 2013), has more contact with

gc31-56. BC5A tiles with few violations (Figure 4E) and therefore

appears to be a pure cell type. BC5A corresponds almost exactly

with BC5i (Figure 4C).

The other cluster, named ‘‘BC5R’’ by Helmstaedter et al.

(2013), has more contact with gc36-51. Because BC5R contains

many tiling violations (Figure 4E), Helmstaedter et al. (2013)

speculated that BC5R was a mixture of more than one type.

Our stratification-based classification confirms their speculation

by effectively dividing BC5R into BC5o and BC5t, both of which

tile the retina separately.
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(C) Each data point represents one BC5 cell, and the coordinates for each cell are the fraction of the BC5 axon in contact with gc36-51 and gc31-56. The dashed
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Please cite this article in press as: Greene et al., Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal
Motion Computation, Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.02.001
The cleanness of the division between BC5A and BC5R is

evident in a histogram of the difference between the gc31-56

and gc36-51 contact fractions, in which twowell-separated clus-

ters are evident (Figure 4D). Note that Helmstaedter et al. (2013)

labeled some of their reconstructed cells as BC5X. This name

was not intended to be a type, but rather indicated cells that

were unclassifiable because they lacked contact with gc31-56

and gc36-51. We do not have this problem because our

coverage of the ganglion cell types is more complete.

BC-SAC Contact Analysis
We computed contact area between SACs and BCs of each

type. The absolute areas were normalized to produce an esti-

mate of the percentage of SAC surface area covered by BCs

of each type (Experimental Procedures). This contact analysis

suggests that BC5t, BC5i, and BC7 are likely the dominant BC

inputs to theOn SAC (Figures 5A and 5C). Our result is consistent
with previous anatomical reconstructions (Helmstaedter et al.,

2013) and physiological experiments (Duan et al., 2014; Chen

et al., 2014), though these previous studies did not distinguish

all three BC5 types. If there is BC5o input, it is likely substantially

weaker than BC5t and BC5i input (Figure 5A).

To characterize the spatial relations between contacting cells,

we examined the dependence of BC-SAC contact on distance

between the BC axon and the SAC soma (Figure 5B). The abso-

lute areas were normalized to estimate the percentage of SAC

surface area covered by BCs of a given type at a particular

distance from the SAC soma (Experimental Procedures). The

resulting graphs show that BC7 prefers to contact On SAC

dendrites near the SAC soma, whereas BC5t and BC5i prefer

to contact at an intermediate distance from the soma (Figure 5C).

One might worry that our contact analyses are sensitive

to incomplete reconstruction of BCs (see Experimental Proce-

dures and ‘‘holes’’ in the tilings of Figures 3E–3G). To avoid
Cell Reports 14, 1–9, March 1, 2016 ª2016 The Authors 5
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Figure 5. Wiring Specificity of On BC-SAC

Circuit

(A) Fraction of On SAC surface area contacted by

On BC types. The error bars indicate SE.

(B) Distance is defined for each BC-SAC pair in the

tangential plane from the centroid of BC-SAC

contact to the point on the SAC soma from which

the dendritic trunk emerges. The centroid of

emergence points is used if there are multiple

trunks.

(C) Fraction of On SAC surface contacted by On

BC types versus distance from the SAC soma. SE

is based on the number of pairs for each BC type

and distance.

(D) Contact predicted from co-stratification anal-

ysis. The scale bar represents 30 mm.
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this problem, the results of our analyses are expressed not as ab-

solute contact areas, but instead as fractions of SAC surface

area. To demonstrate robustness, we repeated our contact

analyses after deleting a random subset of BC5t and BC5i cells

(Figures S2A–S2C). The estimates of SAC coverage turned out

virtually unchanged (Figures S2D and S2E); SAC coverage by

BC5o was still much lower than by BC5t and BC5i.

BC-SAC Co-stratification Analysis
Figure 2D already showed that proximal SAC dendrites span a

wide range of IPL depths, which are different from the depths

of the intermediate and distal dendrites. Because of this depth

difference, the proximal zone co-stratifies with BC7, but only

weakly with BC5, which is consistent with our observed prefer-

ence of BC7 for contact with the proximal zone. Such reasoning

was already used by Famiglietti (1991) to infer that proximal den-

drites should receive inputs from different BC types compared to

distal dendrites.

This suggests that co-stratification could be used to quantita-

tively predict On BC-SAC contact using the integral over depth of

the product of BC and SAC stratification profiles. Figure 5D

shows that this prediction works well in some respects, but not

in others. On the one hand, predicted contact (Figure 5D) nicely

matches actual contact (Figure 5C) for BC5t, BC5i, and BC7,

failing only to match the observed decrease in the distal zone.

On the other hand, actual contact of BC6 is much lower than ex-

pected from predicted contact.

It may seem surprising that BC6 makes little contact with On

SACs, given that it stratifies over a broad range of IPL depths

that includes all zones of On SAC dendrites (Figure 3A). One
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reason may be that the BC6 stratification

profile dips down exactly at the depth of

intermediate and distal dendrites (Fig-

ure 3C), as if BC6 were trying to avoid

contacting the On SAC.

DISCUSSION

Our reconstruction of the On BC-SAC

circuit suggests that its wiring diagram

parallels that of the Off BC-SAC circuit
(Figure 1C). We find that sustained BC types prefer to contact

SAC dendrites near the SAC soma and transient BC types prefer

an intermediate distance from the SAC soma. We interpret

these contact preferences as reflecting synaptic connectivity

preferences.

The spatial organization of the IPL has previously been inter-

preted as supporting rules of wiring specificity. For example,

the division of the IPL into On and Off sublayers (Figure 1A) sup-

ports On to On and Off to Off rules for wiring of BCs to ganglion

cells (GCs) (Famiglietti and Kolb, 1976; Pang et al., 2003). Simi-

larly, the division of the IPL into sustained and transient sublayers

(Figure 1B) could support sustained to sustained and transient to

transient rules of BC-GC wiring (Awatramani and Slaughter,

2000). Here, the BC-SAC wiring diagram provides an explana-

tion of why On and Off SACs are located at the boundaries

between sustained and transient IPL sublayers (Figure 1B).

Namely, this positioning is appropriate for receiving convergent

input from both sustained and transient BC types (Figure 1C).

We also find three differences between the On andOff circuits.

First, BC7 and BC5i/t prefer to contact closer to the On SAC

soma than their analogs BC2 and BC3a contact to the Off SAC

soma (compare Figure 5C with Figure 4d of Kim et al., 2014).

Second, the On SAC is contacted strongly by two transient BC

types, while the Off SAC receives strong contact from a single

transient BC type. Third, BC contact on distal SAC dendrites is

relatively scarcer for the On than the Off circuit (Figure 2E).

The current study comes with several caveats. First, while

most of the available evidence supports the sustained-transient

classification of On BC types adopted in this paper (Baden et al.,

2013; Borghuis et al., 2013), the literature contains at least one
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divergent report about this classification (Ichinose et al., 2014).

Second, synaptic connectivity cannot be identified with certainty

in e2198, because of an unconventional staining technique that

left intracellular organelles invisible. Therefore, we rely on con-

tact between cells as an indirect indicator of connectivity. Third,

motion computation by SAC dendrites might involve biophysics

of SAC dendrites (Gavrikov et al., 2003; Tukker et al., 2004;

Hausselt et al., 2007), which is not incompatible with our hypo-

thetical mechanism involving space-time wiring specificity.

We were able to divide BC5 into three types (BC5t, BC5o, and

BC5i), based on differences in stratification. Using patterns of

contact with two GC types, we also replicated the prior two-

way division by Helmstaedter et al. (2013) of BC5 into BC5A

and BC5R and found that BC5A corresponds almost perfectly

with BC5i. We were able to assign all BC5 cells to either BC5A

or BC5R, because our reconstructions of the GC types are

more complete than those of Helmstaedter et al. (2013). In the

future, we expect contact or connectivity to replace stratification

as the main property used to classify cells into types (Seung,

2009, 2012; Jonas and Kording, 2015).

Wässle et al. (2009) defined BC5 with a 5-HT3R-EGFP trans-

genic mouse line. They speculated that the line labeled two

BC5 types, because of the high density of labeled cells and

because two BC5 types had been molecularly distinguished in

rat (Fyk-Kolodziej and Pourcho, 2007). However, they were un-

able to find molecular markers distinguishing BC5 types in

mouse. Duan et al. (2014) showed that Kcng4 and Cdh9Cre lines

label the same cells as 5-HT3R-EGFP. Haverkamp et al. (2009)

found that the BC5 cells in the 5-HT3R-EGFP line were all

CaBP5-positive. BC5t may be CaBP5-negative (Haruhisa

Okawa and Rachel Wong, personal communication). If this is

the case, it follows that BC5o and BC5i correspond to the two

types in the 5-HT3R-EGFP transgenic line.

The catalog of mouse BC types is likely complete. Our claim is

based on two assumptions: (1) every BC type tiles the retina with

little overlap, and (2) there are no large BCs, which would be rare

and therefore could have been missed by our reconstructions

and those of Helmstaedter et al. (2013). One anomaly is that

BC1 and BC2 tilings exhibit more overlap than those of other

types (Extended Data Figure 6 of Kim et al., 2014). The overlap

is not enough to allow defining a third type that fully tiles the

retina; a hypothetical third type would be sparse in its coverage.

Another qualification is that our reconstructions come from a sin-

gle location in a retina, so we cannot exclude the possibility that

cell types vary across the retina.
EXPERIMENTAL PROCEDURES

The methods of the present study are similar to those used previously (Kim

et al., 2014), so the differences are the focus of the following text. As in the

previous study, all dimensions are uncorrected for shrinkage, which was

previously estimated at 14% by comparison of two-photon and serial electron

microscopy images (Helmstaedter et al., 2013).

Alignment to a Common Coordinate System

In our previous study of the Off BC-SAC circuit (Kim et al., 2014), we defined

normalized coordinates that computationally flattened the Off SACs. In this

study, we improved the coordinate system by additionally utilizing On SACs

as landmarks.
The volume was first rigidly transformed to minimize the averaged squared

distance of Off SACs to the xy plane. A rectangular 323 36 lattice was defined

on the xy plane, with nodes spaced at approximately 10 mm intervals. For each

lattice node,wecomputed themeandepth of all Off SACsurface voxels and the

mean depth of all On SAC surface voxels within a cylindrical neighborhood.

Bilinear interpolation of these depths yielded values mOFF
x;y and mON

x;y for every

point in the xy plane. Then the depth z of every point (x,y,z) was transformed ac-

cording to z
0
= ðz� mOFF

x;y ÞðmON
x;y � mOFF

x;y Þ, yielding a coordinate system in which

Off and On SACs are at depths 0 and 1, respectively. Finally, we linearly trans-

formed to coordinates inwhichOff andOnSACsare at 0.28 and 0.62 IPLdepth,

respectively, for consistency with the definitions of Helmstaedter et al. (2013).

SAC Reconstruction

On SACs were reconstructed mostly during July 2013 to September 2014.

EyeWirers who helped reconstruct On SACs are listed in the Supplemental

Information.

Off SACs were previously reconstructed both by forward tracing from the

candidate SAC soma to dendritic tips and backward tracing from varicosities

on candidate SAC dendrites to the soma (Kim et al., 2014). The forward

method turned out to be less useful for On SACs, because their dendrites

can take rather circuitous paths before reaching their final IPL depth and mak-

ing the distinctive starburst shape. Therefore, it takes a great deal of recon-

struction effort before a candidate cell can be accepted or rejected as a

SAC. It saves human effort if this decision can be made earlier in the recon-

struction process. There were two On SACs that were reconstructed by lab

workers using the forward method. The remaining 75 were reconstructed by

EyeWirers using the backward method.

In a parallel study to be reported elsewhere, we exhaustively reconstructed

all neurons with somata in a (200 mm)2 GCL patch of e2198. This revealed six

extra On SACs beyond the 35 in the patch that had already been reconstructed

for the present study. In other words, the reconstructions of the present study

had achieved 85% coverage of all On SACs in this (200 mm)2 patch. Assuming

that the density of On SACs is the same for all of e2198 as it is in the (200 mm)2

patch, the estimated number of On SACs in e2198 is roughly 110 and our over-

all coverage is roughly 70%. Our estimated coverage of Off SACs is slightly

lower, as the Off SAC density is known to be slightly (less than 10%) larger

than the On SAC density (Jeon et al., 1998).

SAC Properties

Length of SAC dendrites (Figure 2E, inset) was calculated as the mean

distance from the soma on the xy plane of the eight most distant points that

are not within 30 mm of each other. These parameters were chosen because

the points generated appeared to give an accurate representation of the den-

dritic length, while avoiding inaccuracy that arises from outliers and from den-

drites that extend beyond the bounds of the volume.

BC Reconstruction

On BCs were reconstructed mostly during February to December 2014.

Because e2198 extends only partially into the INL, it was not possible to iden-

tify BCs based on the existence of a dendritic arbor in the OPL. Instead, we

identified BC axonal arbors by comparison with Helmstaedter et al. (2013),

who reconstructed all BCs in a patch of retina that included both IPL and

OPL. BC axon candidates were neurites that pass through the interstices of

the INL and emerge in the IPL.Many candidates could be immediately rejected

as amacrine or GCs because their arbors were too large or rejected as glial

cells based on surface concavity and roughness. Little human effort was

necessary for these cases, because large parts of these cells were auto-

matically reconstructed. The remaining candidates were put into the recon-

struction pipeline and were rejected as narrow field amacrine cells if their

stratification profiles deviated markedly from those previously reported by

Helmstaedter et al. (2013) for BCs. There were eight that were rejected in

the middle of reconstruction, and three that were rejected after full

reconstruction.

BC Classification

We define the stratification profile as the density of surface area versus depth

in the IPL. For the purpose of BC classification, we restricted the domain of the
Cell Reports 14, 1–9, March 1, 2016 ª2016 The Authors 7
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stratification profile to the interval between IPL depth 0.4 and 1. The domain

omitted depths between 0 and 0.4 to exclude the trunks of the axonal arbors,

which increase variability of the stratification profiles. Each stratification profile

is normalized like a probability density, so that profile area between IPL depths

0.4 and 1 integrates to unity. Since IPL depth is dimensionless, the stratifica-

tion profile is also dimensionless. Helmstaedter et al. (2013) defined stratifica-

tion profile as the density of reconstructed skeleton. This definition is slightly

different from ours, but yields similar results (data not shown). Percentiles

are defined for a stratification profile in the same way as for a probability den-

sity. Namely, the interval from the nth percentile depth to 0th percentile depth

contains n percent of the area of the stratification profile. As mentioned earlier,

0th percentile depth is defined as IPL depth 0.4. The thickness of the stratifica-

tion profile is defined as the difference between 85th and 25th percentile

depths. Helmstaedter et al. (2013) defined thickness as the difference between

75th and 25th percentile depths, which yields similar classifications. In addition

to stratification, we characterized single cell anatomy by a further property, the

area of the cell’s projection onto the tangential (xy) plane.

We hierarchically clustered our On BCs as follows. The axonal arbors of BC5

and XBC lie between the Off and On SACs. Accordingly, a BC5/XBC cluster

separates from other types based on 85th percentile depth (Figure S1A). This

cluster in turn subdivides by 25th percentile depth into outer (closer to the

INL) and inner (closer to the GCL) clusters (Figure S1B). The outer cluster

can be divided into BC5t and BC5o; the former is more thickly stratified than

the latter (Figure S1D). The inner cluster divides into XBC and BC5i based

on projection area (Figure S1E).

Types outside the BC5/XBC cluster lie between the On SACs and GCL. BC7

separates from the others by 85th percentile depth (Figure S1A). Then BC6,

BC8/9, and RBC separate from each other based on projection area (Fig-

ure S1C). We chose not to separate BC8 and BC9, as the reconstructed cells

were too few to yield two complete tilings.

BC8, BC9, and RBC all appear underrepresented relative to Helmstaedter

et al. (2013). This discrepancy could be artifactual, caused by failures to iden-

tify the relatively thin axons of types BC8 and BC9 in the interstices of the INL.

Alternatively, these cell types might be truly underrepresented in our volume.

Histograms showing the various splits in the hierarchical clustering are

shown in Figure S1. The splits are highly convincing near the top of the hierar-

chy, but less convincing near the bottom. Therefore, we sought further valida-

tion from the principle that the arbors of a BC type should ‘‘tile’’ the retina with

little overlap. If the hierarchical clustering yields cell types that tile the retina,

that would be independent validation of the clustering, which relied only on

anatomical properties of single cells. For all types, few violations of the tiling

principle were observed (Figures 3E–3G). There are some holes in the tilings,

but they are likely the result of omissions in cell reconstruction rather than clas-

sification errors. Violations of tiling can be rectified by swapping cells between

types, to yield the improved classifications given in Figure S3. The fraction of

swapped cells is small (Table S1). Our final classification is exhibited in the type

gallery of Figure S3.

BC-SAC Contact Analysis

We only reconstructed BCs in the central area of e2198 (Figure 1E) and even

within this area some BCs may have been missed (Figures 3E–3G). In our pre-

vious paper, we described methods of analyzing BC-SAC contact that are

robust to both kinds of incompleteness (Kim et al., 2014). The same methods

were applied here, with only minor changes.

We compute each SAC’s total contact area with all BCs of a given type

divided by the SAC’s surface area contained in the convex hull of the same

BCs. This yields an estimate of the fraction of the SAC’s surface in contact

with BCs of the given type. This fraction is averaged over SACs to yield the

estimates shown in Figure 5A, with SE based on the number of SACs that inter-

sect the convex hull of the given BC type.

For each BC type, a coverage factor is computed by dividing the sum of hull

areas for cells of the given type by the area of the union of hulls of the cells. The

coverage factor represents the extent to which neighboring BCs of the same

type overlap one another.

For each BC-SAC pair, we compute the contact area divided by the surface

area of the SAC within the convex hull of the BC. Multiplying by the coverage

factor for the BC type yields an estimate of the fraction of the SAC’s surface
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area contacting the BC type at that distance from that SAC’s soma. This

computation is done for all BC-SAC pairs, except that we discard pairs for

which the BC hull contains fewer than 500 SAC surface voxels in order to

dampen fluctuations. We bin the remaining BC-SAC pairs by distance and

by BC type. For each bin and for each SAC that contributes pairs to that bin,

we compute the mean over BC-SAC pairs. Each data point in Figure 5C rep-

resents the mean of the SAC-specific means for that bin and SE is based on

the number of SACs that contribute to that bin.

Figure S2 demonstrates the robustness of our analysis by showing that

estimated SAC contact fractions change little even after randomly deleting

many BCs.

The contact analysis was done with BC types given by hierarchical clus-

tering after a small number of swaps to correct for tiling violations, as explained

above and in Table S1. The results of the contact analysis look similar if the

tiling swaps are not performed (data not shown).
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